Rename for consistency
This commit is contained in:
parent
e67e57b604
commit
3e2ff86eec
3 changed files with 3 additions and 2 deletions
116
algorithms/priority-queue.scm
Normal file
116
algorithms/priority-queue.scm
Normal file
|
@ -0,0 +1,116 @@
|
|||
(define-module (algorithms priority-queue)
|
||||
#:use-module (ice-9 match)
|
||||
#:export (make-priority-queue
|
||||
pq-length
|
||||
pq-push!
|
||||
pq-pop!
|
||||
pq-peek
|
||||
pq-empty?
|
||||
pq-drain!))
|
||||
|
||||
;; The heap implementation is based on "Chapter 6: Heapsort" from "Introduction
|
||||
;; to Algorithms" by Cormen, Leiserson, Rivest, and Stein.
|
||||
|
||||
;; We store the heap in a vector. The first element of the vector is the current
|
||||
;; heap size, so elements of the heap are indexed starting from 1.
|
||||
|
||||
(define (parent i)
|
||||
(floor-quotient i 2))
|
||||
|
||||
(define (left-child i)
|
||||
(* 2 i))
|
||||
|
||||
(define (right-child i)
|
||||
(1+ (* 2 i)))
|
||||
|
||||
(define (vector-swap! A i j)
|
||||
(let ((tmp (vector-ref A i)))
|
||||
(vector-set! A i (vector-ref A j))
|
||||
(vector-set! A j tmp)))
|
||||
|
||||
;; The sink function is called to maintain the heap property when the root node
|
||||
;; is removed and swapped with the last node in the heap. The new root node
|
||||
;; might need to "sink" down to maintain the heap ordering.
|
||||
(define (sink A i priority cmp)
|
||||
(let ((heap-size (vector-ref A 0)))
|
||||
(let loop ((i i))
|
||||
(let ((l (left-child i))
|
||||
(r (right-child i)))
|
||||
(cond
|
||||
((and (<= r heap-size)
|
||||
(cmp (priority (vector-ref A r)) (priority (vector-ref A l)))
|
||||
(cmp (priority (vector-ref A r)) (priority (vector-ref A i))))
|
||||
(vector-swap! A i r)
|
||||
(loop r))
|
||||
((and (<= l heap-size)
|
||||
(cmp (priority (vector-ref A l))
|
||||
(priority (vector-ref A i))))
|
||||
(vector-swap! A i l)
|
||||
(loop l)))))))
|
||||
|
||||
;; The swim function is used to restore the heap property when a new node is
|
||||
;; added to the heap: it's initially added at the end of the heap and may need to
|
||||
;; "swim" up the heap to maintain the order.
|
||||
(define (swim A i priority cmp)
|
||||
(let loop ((i i))
|
||||
(when (and (> (parent i) 0) (cmp (priority (vector-ref A i))
|
||||
(priority (vector-ref A (parent i)))))
|
||||
(vector-swap! A i (parent i))
|
||||
(loop (parent i)))))
|
||||
|
||||
;; make-priority-queue constructs a new heap-based priority queue
|
||||
;; cmp should be > for a max-priority queue or < for a min-priority queue
|
||||
;; priority is a function that returns the priority of an element
|
||||
(define* (make-priority-queue #:key (cmp >) (priority identity) (initial-capacity 16))
|
||||
(let ((A (make-vector initial-capacity)))
|
||||
(vector-set! A 0 0)
|
||||
(match-lambda*
|
||||
(('size)
|
||||
(vector-ref A 0))
|
||||
(('peek)
|
||||
(let ((heap-size (vector-ref A 0)))
|
||||
(if (< heap-size 1)
|
||||
(error "heap underflow")
|
||||
(vector-ref A 1))))
|
||||
(('pop!)
|
||||
(let ((heap-size (vector-ref A 0)))
|
||||
(if (< heap-size 1)
|
||||
(error "heap underflow")
|
||||
(let ((result (vector-ref A 1)))
|
||||
(vector-set! A 1 (vector-ref A heap-size))
|
||||
(vector-set! A 0 (1- heap-size))
|
||||
(sink A 1 priority cmp)
|
||||
result))))
|
||||
(('push! v)
|
||||
(let ((heap-size (vector-ref A 0))
|
||||
(capacity (vector-length A)))
|
||||
(when (>= heap-size (1- capacity))
|
||||
(let ((new-A (make-vector (* 2 capacity))))
|
||||
(vector-copy! new-A 0 A)
|
||||
(set! A new-A)))
|
||||
(let ((heap-size (1+ heap-size)))
|
||||
(vector-set! A 0 heap-size)
|
||||
(vector-set! A heap-size v)
|
||||
(swim A heap-size priority cmp)))))))
|
||||
|
||||
(define (pq-length q)
|
||||
(q 'size))
|
||||
|
||||
(define (pq-push! q v)
|
||||
(q 'push! v))
|
||||
|
||||
(define (pq-pop! q)
|
||||
(q 'pop!))
|
||||
|
||||
(define (pq-peek q)
|
||||
(q 'peek))
|
||||
|
||||
(define pq-empty? (compose zero? pq-length))
|
||||
|
||||
;; Pop all elements of a queue onto a list, emptying the queue in the process.
|
||||
;; Return the resulting list.
|
||||
(define (pq-drain! q)
|
||||
(let loop ((result '()))
|
||||
(if (pq-empty? q)
|
||||
(reverse result)
|
||||
(loop (cons (pq-pop! q) result)))))
|
Loading…
Add table
Add a link
Reference in a new issue